kuromoji_tokenizer
The kuromoji_tokenizer accepts the following settings:
mode- The tokenization mode determines how the tokenizer handles compound and unknown words. It can be set to:
 normal- 
Normal segmentation, no decomposition for compounds. Example output:
関西国際空港 アブラカダブラ search- 
Segmentation geared towards search. This includes a decompounding process for long nouns, also including the full compound token as a synonym. Example output:
関西, 関西国際空港, 国際, 空港 アブラカダブラ extended- 
Extended mode outputs unigrams for unknown words. Example output:
関西, 関西国際空港, 国際, 空港 ア, ブ, ラ, カ, ダ, ブ, ラ discard_punctuation- Whether punctuation should be discarded from the output. Defaults to 
true. lenient- Whether the 
user_dictionaryshould be deduplicated on the providedtext. False by default causing duplicates to generate an error. user_dictionary- The Kuromoji tokenizer uses the MeCab-IPADIC dictionary by default. A 
user_dictionarymay be appended to the default dictionary. The dictionary should have the following CSV format: 
<text>,<token 1> ... <token n>,<reading 1> ... <reading n>,<part-of-speech tag>
		
	As a demonstration of how the user dictionary can be used, save the following dictionary to $ES_HOME/config/userdict_ja.txt:
東京スカイツリー,東京 スカイツリー,トウキョウ スカイツリー,カスタム名詞
		
	You can also inline the rules directly in the tokenizer definition using the user_dictionary_rules option:
				PUT kuromoji_sample
					{
  "settings": {
    "index": {
      "analysis": {
        "tokenizer": {
          "kuromoji_user_dict": {
            "type": "kuromoji_tokenizer",
            "mode": "extended",
            "user_dictionary_rules": ["東京スカイツリー,東京 スカイツリー,トウキョウ スカイツリー,カスタム名詞"]
          }
        },
        "analyzer": {
          "my_analyzer": {
            "type": "custom",
            "tokenizer": "kuromoji_user_dict"
          }
        }
      }
    }
  }
}
		
	nbest_cost/nbest_examples- Additional expert user parameters 
nbest_costandnbest_examplescan be used to include additional tokens that are most likely according to the statistical model. If both parameters are used, the largest number of both is applied. nbest_cost- The 
nbest_costparameter specifies an additional Viterbi cost. The KuromojiTokenizer will include all tokens in Viterbi paths that are within the nbest_cost value of the best path. nbest_examples- The 
nbest_examplescan be used to find anbest_costvalue based on examples. For example, a value of /箱根山-箱根/成田空港-成田/ indicates that in the texts, 箱根山 (Mt. Hakone) and 成田空港 (Narita Airport) we’d like a cost that gives is us 箱根 (Hakone) and 成田 (Narita). 
Then create an analyzer as follows:
				PUT kuromoji_sample
					{
  "settings": {
    "index": {
      "analysis": {
        "tokenizer": {
          "kuromoji_user_dict": {
            "type": "kuromoji_tokenizer",
            "mode": "extended",
            "discard_punctuation": "false",
            "user_dictionary": "userdict_ja.txt",
            "lenient": "true"
          }
        },
        "analyzer": {
          "my_analyzer": {
            "type": "custom",
            "tokenizer": "kuromoji_user_dict"
          }
        }
      }
    }
  }
}
				GET kuromoji_sample/_analyze
					{
  "analyzer": "my_analyzer",
  "text": "東京スカイツリー"
}
		
	The above analyze request returns the following:
{
  "tokens" : [ {
    "token" : "東京",
    "start_offset" : 0,
    "end_offset" : 2,
    "type" : "word",
    "position" : 0
  }, {
    "token" : "スカイツリー",
    "start_offset" : 2,
    "end_offset" : 8,
    "type" : "word",
    "position" : 1
  } ]
}
		
	discard_compound_token- 
Whether original compound tokens should be discarded from the output with
searchmode. Defaults tofalse. Example output withsearchorextendedmode and this optiontrue:関西, 国際, 空港 
If a text contains full-width characters, the kuromoji_tokenizer tokenizer can produce unexpected tokens. To avoid this, add the icu_normalizer character filter to your analyzer. See Normalize full-width characters.