Delimited payload token filter
The older name delimited_payload_filter is deprecated and should not be used with new indices. Use delimited_payload instead.
Separates a token stream into tokens and payloads based on a specified delimiter.
For example, you can use the delimited_payload filter with a | delimiter to split the|1 quick|2 fox|3 into the tokens the, quick, and fox with respective payloads of 1, 2, and 3.
This filter uses Lucene’s DelimitedPayloadTokenFilter.
A payload is user-defined binary data associated with a token position and stored as base64-encoded bytes.
Elasticsearch does not store token payloads by default. To store payloads, you must:
- Set the 
term_vectormapping parameter towith_positions_payloadsorwith_positions_offsets_payloadsfor any field storing payloads. - Use an index analyzer that includes the 
delimited_payloadfilter 
You can view stored payloads using the term vectors API.
The following analyze API request uses the delimited_payload filter with the default | delimiter to split the|0 brown|10 fox|5 is|0 quick|10 into tokens and payloads.
				GET _analyze
					{
  "tokenizer": "whitespace",
  "filter": ["delimited_payload"],
  "text": "the|0 brown|10 fox|5 is|0 quick|10"
}
		
	The filter produces the following tokens:
[ the, brown, fox, is, quick ]
		
	Note that the analyze API does not return stored payloads. For an example that includes returned payloads, see Return stored payloads.
The following create index API request uses the delimited-payload filter to configure a new custom analyzer.
				PUT delimited_payload
					{
  "settings": {
    "analysis": {
      "analyzer": {
        "whitespace_delimited_payload": {
          "tokenizer": "whitespace",
          "filter": [ "delimited_payload" ]
        }
      }
    }
  }
}
		
	delimiter- (Optional, string) Character used to separate tokens from payloads. Defaults to 
|. encoding- (Optional, string) Data type for the stored payload. Valid values are:
 float- (Default) Float
 identity- Characters
 int- Integer
 
To customize the delimited_payload filter, duplicate it to create the basis for a new custom token filter. You can modify the filter using its configurable parameters.
For example, the following create index API request uses a custom delimited_payload filter to configure a new custom analyzer. The custom delimited_payload filter uses the + delimiter to separate tokens from payloads. Payloads are encoded as integers.
				PUT delimited_payload_example
					{
  "settings": {
    "analysis": {
      "analyzer": {
        "whitespace_plus_delimited": {
          "tokenizer": "whitespace",
          "filter": [ "plus_delimited" ]
        }
      },
      "filter": {
        "plus_delimited": {
          "type": "delimited_payload",
          "delimiter": "+",
          "encoding": "int"
        }
      }
    }
  }
}
		
	Use the create index API to create an index that:
- Includes a field that stores term vectors with payloads.
 - Uses a custom index analyzer with the 
delimited_payloadfilter. 
				PUT text_payloads
					{
  "mappings": {
    "properties": {
      "text": {
        "type": "text",
        "term_vector": "with_positions_payloads",
        "analyzer": "payload_delimiter"
      }
    }
  },
  "settings": {
    "analysis": {
      "analyzer": {
        "payload_delimiter": {
          "tokenizer": "whitespace",
          "filter": [ "delimited_payload" ]
        }
      }
    }
  }
}
		
	Add a document containing payloads to the index.
				POST text_payloads/_doc/1
					{
  "text": "the|0 brown|3 fox|4 is|0 quick|10"
}
		
	Use the term vectors API to return the document’s tokens and base64-encoded payloads.
				GET text_payloads/_termvectors/1
					{
  "fields": [ "text" ],
  "payloads": true
}
		
	The API returns the following response:
{
  "_index": "text_payloads",
  "_id": "1",
  "_version": 1,
  "found": true,
  "took": 8,
  "term_vectors": {
    "text": {
      "field_statistics": {
        "sum_doc_freq": 5,
        "doc_count": 1,
        "sum_ttf": 5
      },
      "terms": {
        "brown": {
          "term_freq": 1,
          "tokens": [
            {
              "position": 1,
              "payload": "QEAAAA=="
            }
          ]
        },
        "fox": {
          "term_freq": 1,
          "tokens": [
            {
              "position": 2,
              "payload": "QIAAAA=="
            }
          ]
        },
        "is": {
          "term_freq": 1,
          "tokens": [
            {
              "position": 3,
              "payload": "AAAAAA=="
            }
          ]
        },
        "quick": {
          "term_freq": 1,
          "tokens": [
            {
              "position": 4,
              "payload": "QSAAAA=="
            }
          ]
        },
        "the": {
          "term_freq": 1,
          "tokens": [
            {
              "position": 0,
              "payload": "AAAAAA=="
            }
          ]
        }
      }
    }
  }
}